

OCR (A) Chemistry A-level Topic 5.2.2 - Enthalpy and entropy

Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Define entropy

Define entropy

A measure of the dispersal of energy in a system which is greater when the system is more disordered

What is the symbol of entropy?

What is the symbol of entropy?

S

Solid or gas, which is more disordered?

Solid or gas, which is more disordered?

What is the unit of standard entropy?

What is the unit of standard entropy?

J K⁻¹ mol⁻¹

How does temperature affect entropy?

How does temperature affect entropy?

The greater temperature particles have more energy and move more. Thus the arrangement of particles become more randon. More random arrangement = higher entropy

DOG PMTEducation

www.pmt.education

When a solid ionic lattice is dissolved in solution what happens to entropy?

D PMTEducation

When a solid ionic lattice is dissolved in solution what happens to entropy?

Entropy increases because the ions are more disordered

How does change in number of gas molecules in a reaction affect entropy?

How does change in number of gas molecules in a reaction affect entropy?

Increase in number of gas molecules = increase in entropy

Decrease in number of gas molecules =

www.pmt.education

▶
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O <p

decrease in entropy

Write the equation used to calculate entropy change

Write the equation used to calculate entropy change

$$\Delta S^{\theta}_{\text{reaction}} = \Sigma S^{\theta}_{\text{products}} - \Sigma S^{\theta}_{\text{reactants}}$$

Write the Gibbs' free energy equation and state what each symbol means

Write the Gibbs' free energy equation and state what each symbol means

$\Delta G = \Delta H - T \Delta S$

ΔG- Gibbs Free Energy, or "available energy"
ΔH- Enthalpy change
T- Temperature in Kelvin
ΔS- Entropy change

D PMTEducation

ΔΗ	ΔS	ΔG	Feasibility of spontaneous change
Negative	positive		

ΔΗ	ΔS	ΔG	Feasibility of spontaneous change
negative	positive	Always negative	Reaction feasible

ΔΗ	ΔS	ΔG	Feasibility of spontaneous change
Positive	neagtive		

ΔН	ΔS	ΔG	Feasibility of spontaneous change
Positive	Negative	Always positive	Reaction never feasible

www.pmt.education

ΔΗ	ΔS	ΔG	Feasibility of spontaneous change
Positive	positive		

ΔΗ	ΔS	ΔG	Feasibility of spontaneous change
positive	positive	Negative at high temperatures	Feasible at high temperatures

ΔΗ	ΔS	ΔG	Feasibility of spontaneous change
Negative	Negative		

ΔΗ	ΔS	ΔG	Feasibility of spontaneous change
Negative	Negative	Negative at low temperatures	Reaction feasible at low temperature

For a reaction to occur spontaneously ∆G must be positive or negative?

For a reaction to occur spontaneously ΔG must be positive or negative?

Negative

What are the limitations of the predictions of feasibility made by using ΔG ?(2)

D PMTEducation

What are the limitations of the predictions of feasibility made by using ΔG ?(2)

- Reaction may have high activation energy
- Rate of reaction may be very slow

